THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

032/2C

CHEMISTRY 2C ACTUAL PRACTICAL C

(For Both School and Private Candidates)

Time: 2:30 Hours

Wednesday, 19th November 2014 a.m.

Instructions

- This paper consists of three (3) questions. Answer all the questions.
- Question 1 carries twenty (20) marks and the rest carry fifteen (15) marks each.
- Qualitative Analysis Guidance Pamphlets may be used after a thorough check by the supervisor.
- 4. Cellular phones and calculators are **not** allowed in the examination room.
- 5. Write your **Examination Number** on every page of your answer booklet(s).
 - You may use the following constants:

Atomic masses:

H = 1,
$$C = 12$$
, $O = 16$, $Na = 23$, $Cl = 35.5$, $S = 32$.
1 litre = 1 dm³ = 1000 cm³.

- You are provided with the following solutions: 1.
 - D: Containing 1.46 g of hydrochloric acid in 0.40 dm³ of solution;
 - D: Containing 1.46 g of hydrochione acid in 5.75

 F: Containing 2.0 g of impure sodium hydroxide contaminated with sodium chloride, 0.5 dm³:

Phenolphthalein and methyl orange indicators.

Questions

- Which is the suitable indicator for the titration of the given solutions? Gi_{Ve} (a) reason for your answer.
- Titrate the acid (in a burette) against the base (in a conical flask) using drops of your indicator and obtain three titre values.
- cm³ of **F** required _____ cm³ of **D** for complete reaction. Write a balanced chemical equation for the reaction between **D** and **F**. (c) (ii)
- Showing your procedures clearly, calculate the percentage by mass of sodius (d) chloride in impure base.
- You are provided with the following: 2.

Solution C containing 0.5 M sodium thiosulphate (Na₂S₂O₃);

Solution E containing 0.1 M nitric acid (HNO₃);

Distilled water;

Plain paper marked X;

Stopwatch.

Procedure

Measure 10 cm³ of solution C and put into 100 cm³ beaker provided. (i)

(ii) Measure 10 cm³ of solution E and put into 100 cm³ beaker containing solution C, and immediately start the stopwatch.

- (iii) Swirl the contents and place the beaker on top of letter X on the plain paper provided Watch from above and observe the changes.
- (iv) Switch off the stopwatch when the mark X disappears.
- (v) Record the time taken for the letter X to disappear.
- (vi) Repeat the experiment using different data as shown in Table 1.

Table 1: Table of Results

Experiment	Vol. of E (cm ³)	Vol. of C (cm ³)	Vol. of Distilled water (cm ³)	Time (s)
1	10	10	0	
2	10	8	2	
3	10	6	4	
4	10	4	6	

Oue	stions
(a)	What is the aim of the whole experiment?
(b)	Complete Table 1.

- (c) Giving reason(s), identify the experiment in which the reaction was:
 - (i) fast (ii) slow.
- (d) With state symbols, write the ionic equation for the reaction between C and E.
- (e) List any three factors affecting the reaction in 2(d).
- (f) (i) Plot a graph of volume of C against time.
 - (ii) What can you conclude from the graph?

Sample Y contains one cation and one anion. Using systematic qualitative analysis procedures record carefully your experiments, observations, inferences and finally identify the anion and cation in sample Y.

Table 2: Table of results

^	_		_ 1			٠			
	n	n	cl	11	c	1	n	n	٠
·	v	ш	u	u	3	ı	v	ш	

(i)	The cation	in sample	Y is	
		1		

(ii)	The anion	in	sample	Y	is	

⁽iii) The chemical formula of sample Y is _____.